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ABSTRACT
Analyzing and categorizing the style of visual art images, espe-
cially paintings, is gaining popularity owing to its importance in
understanding and appreciating the art. The evolution of painting
style is both continuous, in a sense that new styles may inherit,
develop or even mutate from their predecessors and multi-modal
because of various issues such as the visual appearance, the birth-
place, the origin time and the art movement. Motivated by this
peculiarity, we introduce a novel knowledge distilling strategy to
assist visual feature learning in the convolutional neural network
for painting style classification. More specifically, a multi-factor
distribution is employed as soft-labels to distill complementary
information with visual input, which extracts from different histor-
ical context via label distribution learning. The proposed method is
well-encapsulated in a multi-task learning framework which allows
end-to-end training. We demonstrate the superiority of the pro-
posed method over the state-of-the-art approaches on Painting91,
OilPainting, and Pandora datasets.

KEYWORDS
painting style classification; label distribution learning; art history

ACM Reference Format:
Jufeng Yang, Liyi Chen, Le Zhang, Xiaoxiao Sun, Dongyu She, Shao-
Ping Lu, Ming-Ming Cheng. 2018. Historical Context-based Style
Classification of Painting Images via Label Distribution Learning.
In 2018 ACM Multimedia Conference (MM ’18), October 22-26,
2018, Seoul, Republic of Korea. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3240508.3240593

1 INTRODUCTION
Painting style classification is an attractive topic that can help the
public to decode art paintings better and understand the theme
and emotion therein [32]. It is a complex cognitive task because
multiple visual areas in the human brain are involved in this pro-
cess [17, 42, 45]. And most art historians agree with the assumption
that art can be classified into the specific style [2, 7, 27, 39, 49].
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Figure 1: The origin time and birthplace of painting styles in
the Painting91 dataset. There are some paintings from dif-
ferent styles and we arrange them according to the chrono-
logical order, as indicated by the horizontal axis.

Moreover, it admits high intra-class variations caused by differ-
ences between individual creative habit [24]. Since the pioneering
work [41] was proposed, several visual features [6, 9, 19, 26, 30, 31]
have consistently improved the classification performance lead-
ing the research community to address challenging scenarios in
complex datasets [3, 5, 23].

Recently, the convolutional neural network (CNN) with hierar-
chical feature learning capability has led to a breakthrough in many
computer vision tasks. Motivated by this, CNNhas beenwidely used
to extract the image features for the style classification [1, 33, 34]
as well. However, it is widely accepted that the development of
painting style is a continuous process and new styles may inherit,
develop or even mutate from their predecessors. Furthermore, in
actual artistic appreciation, experts usually consider the historical
background, politics, religion and other factors when analyzing
the style of a painting [18, 46]. From this point of view, painting
style evolution is multi-modal because that different input modali-
ties can play an important role in, such as the visual appearance,
the birthplace, the origin time. However, existing deep learning
methods for painting style classification never utilize multiple input
sources mentioned above which encode complementary materials
to commonly used visual descriptors.

As shown in Figure 1, twelve paintings from different styles are
listed on the axis, and their locations based on their origin time are
also marked. We use four marks with different colors to represent
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the birthplace of these styles in themap, in which the orange, purple,
blue, yellow countries represent Italy, France, Britain, and Russia,
respectively. The outer border color of the image corresponds to
the color of the marker on the map. We can observe that in some
cases the transition of styles is subtle, indicating that the styles
produced in the same period often have a high degree of similarity,
and for some styles originating from different birthplaces there
is usually an obvious gap. Therefore, we argue that a good style
classification system should consider different inputmodalities such
as the historical context of the paintings mentioned here as they
usually encode complementary information with visual descriptors.

In order to use these historical contexts, we propose to synthesize
historical knowledge into the image label via the label distribution
learning (LDL) [4, 11–15, 40] which is further employed to generate
a proper label distribution in each modality. Multiple label distribu-
tions are finally encapsulated into our learning framework which
can significantly assist visual feature learning in CNN thus leading
to largely improved classification performance. We first study the
effect of the style distribution under two kinds of time distributions,
a place distribution, and a distribution based on the art movement.
Furthermore, we show distributions from each domain are well-
complementary and finally a fusion of multiple distributions is
advantageous. In the training phase of our experiment, art histori-
cal context information (origin time, birthplace, and art movement),
which can be easily collected based on the available style label, are
converted into a label distribution to assist visual feature learning
in CNN. The label distribution works as a strong regularizer by
providing a soft label for CNN. During testing, our method works
exactly the same way as conventional methods by just a simple
feed-forward of only visual inputs images. Extensive experiments
show that our method outperforms the state-of-the-art approaches
on the Painting91 style dataset, OilPainting dataset, and Pandora
dataset. In addition, the proposed method is generic and can be
widely applicable for other tasks in which incorporating relevant
side-information into visual classification can be beneficial.

Our contributions are summarized as follows. First, we present
the historical context-based side information, such as the origin
time, birthplace, and the art movement, which may encode com-
plementary information with commonly used visual descriptors.
Second, we propose an art historical label distribution learning
strategy to encode different input modality into a concrete label
distribution. Third, we utilize the knowledge of historical context
information to produce a soft label for each painting image and
achieve improved performance on three painting datasets. We will
make the source code and data available to the public.

2 RELATEDWORK
2.1 Style Classification
Painting style classification has been a classical problem in multi-
media community and existing methods typically employ various
visual descriptors [1, 9, 10, 23, 41]. Sablatnig et al. [41] propose
a classification system for portrait miniatures and examine the
structural signature based on brush strokes, which enables a semi-
automatic classification through three different levels of informa-
tion: the color, shape of the region, and structure of brush strokes.
Zujovic et al. [56] present some features that address the salient

aspects of a painting (e.g., color, texture and edges) in order to clas-
sify paintings into genres. A framework integrating multiple visual
features is proposed to support automatic classification on large
western painting collections [43]. Moreover, Khan et al. [23] inves-
tigate the effect of various local features and global features (such
as bag-of-words framework, LBP, GIST, PHOG, Color GIST, etc.) in
artist and style classification tasks, and prove combining multiple
features can significantly improve the classification performance.

Motivated by the recent success of deep networks on visual recog-
nition, deep learning for art painting classification is also gaining its
popularity [20, 28, 29, 47]. Chu et al. [5] use the Gram matrix to cal-
culate the correlations between the responses of features extracted
by CNN in style classification tasks. The cross-layer features from
CNN also present good experimental results on style recognition
tasks [33]. Karayev et al. [22] define several different types of image
style based on several different aspects of visual style, including
photographic techniques, composition styles, moods, genres, and
types of scenes. For these versatile visual elements, they evaluate
single-feature performance (e.g., color histogram, GIST, deep CNN
features, etc.) as well as second-stage fusion ofmultiple features. The
multi-scale CNN proposed by Peng [34] introduces a method to ex-
ponentially generate more training examples with the assumption
of label-inheritable property, which can extract multi-scale features
from the original and generated images. Another work based on
multi-scale features [1] automatically extracts the region of inter-
ests (ROI). It describes both holistic and region-of-interests using
multi-scale dense convolutional features and separately encodes
the two kinds of features using Fisher vector for computational
painting categorization.

2.2 Label Distribution Learning
From the statistic point of view, classification is essentially building
a mapping from the instances to their labels. Hence, conventional
classification approaches typically answer “which label can describe
the instance?” [12], while little is known about “ how well can this
ground truth label describe the instance? ”. Considering our painting
style classification here, a painting image often relates to multiple
basic styles (e.g., Impressionism, Baroque, Cubism, Expressionism
and so on). Each basic style can be correlated and play an important
role in the image. For instance, the Baroque style is usually consid-
ered evolved from the Renaissance style [8]. The various intensities
of all the basic styles naturally form an style distribution which can
be captured from various aspects, such as historical context, for the
painting images. By regarding the style with the highest intensity
or style with higher intensities than a threshold as the positive
label, the problem can be naturally solved by existing classification
methods. Unfortunately, these approaches will lose the important
information of the different intensities of the related styles.

To this end, LDL is proposed to use a certain number of contin-
uous labels to describe one instance. This is usually achieved by
defining a probability for each label to represent the degree of how
it describes the instance. LDL has established its effectiveness in
various vision problems [36, 50, 52, 54, 55]. Yang et al. [53] propose
the deep age distribution learning (DADL) method to deal with the
situation where apparent age estimation differs from chronologi-
cal age estimation, probably due to the ambiguity from multiple
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Figure 2: The illustration of the proposed method. Taking into account the three factors in the historical context that describe
the relationship between styles (Origin Time, Birthplace, Art Movement), the framework simultaneously optimizes the classi-
fication loss and distribution loss. The softmax loss is employed as the classification loss, while the style distribution loss (KL
loss) is used as an auxiliary task to assist visual feature learning towards better generalization ability.

individual labelers. In addition, Gao et al. [11] demonstrate the su-
periority of LDL in some domains, such as apparent age estimation,
head pose estimation, multi-label classification, and semantic seg-
mentation. Yang et al. [51] leverage the ambiguity and relationship
between emotional categories to generate emotional distribution,
and develop a multi-task deep framework that jointly optimizes
classification as well as distribution prediction. While we take in-
spirations from these methods, we are the first to employ LDL for
style classification with our novel enhancement. More specifically,
we design proper strategies to generate good label distribution for
each historical context. After identifying different label distribu-
tions are complementary, multiple label distributions are finally
encapsulated into our learning framework which can significantly
assist visual feature learning in CNN.

3 METHOD
We propose to generate label distributions considering the impact
of three factors which capture complementary information with
commonly used visual input in the historical context. Label dis-
tributions from three input modalities are well encapsulated into
a single distribution finally and serve as a soft-label to enhance
the visual feature learning in CNN within a multi-task learning
framework. The pipeline of our method is shown in Figure 2.

3.1 Generating Label Distribution
Given painting images {x (j)}Nj=1, we note the ground truth style as
{y(j)}Nj=1, where y

(j) ∈ {1, · · · , c}. For each instance, we assign a
finite set of labels {li }ci=1 representing the degree to which styles
describe the image regarding to historical information, where c
denotes the number of styles. Note that

∑c
i=1 li = 1 and li ∈ [0, 1].

In addition, we further propose three strategies to generate the
label distributions denoted as t, b, a, which consider the origin
time, birthplace, and art movement, respectively.

Time distribution. Motivated by existing single label-based
style classification approaches [5, 38], we first generate the label
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Figure 3: The origin time of 13 styles in the Painting91
dataset and two kinds of time distributions. The ‘TD1’ rep-
resents the label distribution according to the numerical or-
der of the styles, and the horizontal distance between each
adjacent style is set as 1. The ‘TD2’ calculates the label dis-
tribution based on the origin time of each style, and the
horizontal distance between each adjacent style is normal-
ized according to the origin time of each style. According
to ‘TD1’ and ‘TD2’, the label distribution of the Impression-
ism style is generated, and the corresponding styles are also
given (best in color view).

distribution t according to the origin time of the style. Previous
attempts [21] turn out to be confined because they overemphasize
temporally adjacent styles. To this end, we employ two strategies
to generate the time distributions for art paintings, as illustrated
in Figure 3. The first time distribution (TD1) represents the style
distribution according to the numerical order of the styles. In con-
trast to TD1 which only considers the sequence of occurrence, the
second time distribution (TD2) uses the real origin time of each
style. It takes the origin time of style as a condition for generating
label distribution.



Following theGaussian distribution assumption in LDLworks [11,
12, 16], we adopt the typical Gaussian function to generate the time
distribution t1 for TD1. Each element of t1 is denoted as:

t1i =
f (Ti ,Ty ,σ )∑c

k=1 f (Tk ,Ty ,σ )
. (1)

And the probability density function can be written as follows:

f (Ti ,Ty ,σ ) =
1

√
2πσ

exp(−
|Ti −Ty |2

2σ 2 ) + ε

c
, (2)

where Ti represents the numerical time index of desired style i ,
and the parameter Ty represents the numerical time index of the
ground truth style y. The σ denotes the compactness degree of
style in terms of the origin time. Here we fix the parameter ε to
0.1, ensuring that all the styles are taken into consideration with
various probabilities. Then we normalize the label to make sure the
sum of distribution is 1 as shown in Equation 1.

For TD2, the origin time of each style does not share a unified
step size, as illustrated in Figure 3 (b). More specifically, in some
time period, there might be only one painting style, while in another
period the styles are muchmore diversified.We thus normalize such
origin time of styles using logarithmic calculation before generating
the label distribution:

T̂i = ln Ti −T0
δ
, (3)

where T̂i represents the normalized point-in-time value of desired
style i where T̂i denotes the time after normalization. The time
parameter T0 as well as the parameter δ are used to narrow the
time interval between neighboring styles to facilitate the subse-
quent learning processing. And we denote each element of time
distribution t2 as:

t2i =
f (T̂i , T̂y ,σ )∑c

k=1 f (T̂k , T̂y ,σ )
, (4)

where the parameter T̂y represents the normalized point-in-time
value of the ground truth style y.

Birthplace distribution.We use the birthplace of style to de-
fine the label distribution. Observing the birthplace of various styles,
one can see that almost all styles were usually originated from sev-
eral limited countries, and it is easy to discover the transfer of the
world art center. Therefore, we define each label of the birthplace
distribution b in the following manner:

bi =


1, i = y
β
nb
, Bi = By , i , y

0, otherwise

, (5)

where Bi is the birthplace of style i , By is the birthplace of ground
truth styley, and β controls the weight of the birthplace correlation.
If i = y, the desired style i is the real style, so it is assigned the
value of 1. For other styles that were born in the same country, we
note the total number as nb , and give them the same label value β

nb
,

otherwise zero. The rationale here is that styles originate from the
same birthplace should have strong correlations than different styles
which generate from different birthplaces. Similarly, we normalize
the distribution in Equation 5 to make sure their sum is 1.

Art movement distribution. During a restricted period of
time, a group of artists share a specific artistic philosophy or goal,
and gradually form a technical tendency or style in art, which is
understood as the art movement [38]. In this study, we also investi-
gate the feasibility of encoding the art movement into another label
distribution. In our view, each art style can usually be associated
with to an art movement period. Puthenputhussery et al. [38] show
that the art styles belonging to the same art movement period have
higher similarity than others that are across different art movement
periods. In addition, some styles are considered to have an explicit
inheritance relationship with others. Similar to the birthplace dis-
tribution, we define the value of ground truth style equals to 1. And
for other styles that belong to the same art movements, we give the
label with a fixed value, otherwise assigned zero. We define each
element of the art movement distribution a as:

ai =


1, i = y
α
na , Ai = Ay , i , y

0, otherwise

, (6)

where Ai is the art movement of style i , Ay is the art movement of
ground truth styley, and α controls the weight of the art movement
correlation. If i = y, the desired style i is the real style, so it is
assigned the value of 1. For other styles that belong to the same
art movement, we note the total number as na and give them the
same label value α

na , otherwise assigned zero. In the same way, the
distribution in Equation 6 is normalized to ensure that the sum is 1.

3.2 Multi-factor Distribution
As each label distribution aims to capture different art historical
context, they usually are well-complementary. This further mo-
tivates us to investigate a proper strategy to fuse multiple label
distributions which are elaborated in this section.

As described in Figure 3, we have already investigated two dif-
ferent time distribution strategies, i.e. TD1 and TD2, according to
the numerical order of occurrence and the point-in-time of origin.
While using TD2 can take into account the particularity of style,
we also hope to make use of the order of styles (TD1) to make
up for the problem of the extremely distant distance between ad-
jacent styles with partial time spans caused by using TD2 alone.
In our implementation, we choose TD1 as the main part of the
overall time distribution and adjust the distance of some styles
that have a close correlation based on TD2. We further consider
incorporating the birthplace factor and art movement factor into
our final distribution label. In order to consider multiple art his-
torical factors, we integrate all the information with sum pooling
operation, which is simple but efficient. And after normalization,
the integrated multi-factor distribution is denoted as l:

l = η × t1 + (1 − η) × t2 + b + a, (7)

where the parameter η controls the influence degree of the point-in-
time of style generation. Finally, we normalize l so that

∑c
i=1 li = 1.

3.3 Optimization
We assume that we have access to N training samples, and for each
sample x (j), we generate the label distribution l(j) using the ground
truth label y(j). Our loss function is denoted as follows:



L = λLsty (x ,y) + (1 − λ)Ldis (x , l), (8)
where the L represents final loss, Lsty and Ldis respectively denote
the classification loss and style distribution loss (KL loss), and the
λ ∈ [0, 1] is a weight factor to control the proportion of two losses.

For the classification loss, we calculate the loss of the ground
truth and predicted style, and minimize the softmax function to
optimize it, denoted as:

Lsty (x ,y) = − 1
N

N∑
j=1

c∑
i=1

1(y(j) = i) lnp(j)i , (9)

where p(j)i indicates the probability of classifying the jth instance
x (j) as the ith style. And 1 is an indication function where 1(ϵ) =
1 i.i.f. ϵ = True , otherwise 1(ϵ) = 0.

For the distribution learning, We employ the Kullback-Leibler
(KL) loss following the work of Gao et al. [11] and intend to mini-
mize the following KL divergence:

KLdiv =
∑
i
l(j)i ln

l(j)i
p
(j)
i

∝
∑
i
−l(j)i lnp(j)i . (10)

And the style distribution loss measures the KL divergence, which
is defined as follows:

Ldis (x , l) = − 1
N

N∑
j=1

c∑
i=1

l(j)i lnp(j)i , (11)

In this way, we can employ information of l, derived from historical
contexts such as origin time, birthplace and art movement, as a soft-
label to assist visual feature learning in CNN. Hence, our system
can not only just learn from “which style can describe this specific
painting image?’, but also benefit from utilizing side information
about “How well this style can describe this specific painting image?”.

4 EXPERIMENT
4.1 Datasets
We evaluate the performance of our method for the painting style
classification on challenging painting datasets: Painting91 [23],
OilPainting [5], and Pandora dataset [9]. The Painting91 dataset
consists of 4,266 paintings of 91 painters, in which 2,338 painting
images coming from 50 artists are distributed into 13 style cate-
gories. We only use these images that have the style label (2,338
images) to evaluate the classification performance. The training set
and test set contain 1,250 and 1,088 images respectively, which is
consistent with existing work [23]. The OilPainting dataset collects
totally 19,787 oil painting images belonging to 17 image styles. The
Pandora dataset contains 7,724 images from 12 art styles. Following
existing evaluating protocol [5, 9], five-fold and four-fold cross-
validation is conducted on the OilPainting and the Pandora dataset
respectively.

4.2 Implementation Details
We build a multimodal CNN framework based on the popular deep
model VGGNet [44] with 16 layers, which is initialized using the
weights trained for the large-scale image classification task [25].
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Figure 4: Accuracy performance of the different value of λ,
β and α on the Painting91 datasets. We experiment with the
value of λ from 0 to 1 in fig(a), and the value of β and α from
0.1 to 0.6 in fig(b) and fig(c).

We change the category number of the fc8 layer based on the re-
quirement of datasets because the class number of painting datasets
is not equal to ImageNet categories. Different from the original loss
layer of VGGNet, we use our multi-task loss including the classifi-
cation loss and style distribution loss in order to accommodate the
style distribution over the three factors we have proposed. Since
these three datasets we used only have a single label for each im-
age, firstly we need to generate distribution labels by means of the
relationship between various styles, which respectively conform to
different factors. And these historical context information are only
used to generate the label distribution for the training set.

The learning rate of the last fully-connected layer is initialized
0.01, the batch size of the network is 32, and we fine-tune all layers
using stochastic gradient descent. We totally use 6,000 iterations
taking about 3h in each experiment, and the learning rate dropped
to one-tenth of the original every 1,500 iterations, in order to ex-
tract more precise style related information. All our experiments
are carried out on NVIDIA GTX TITAN X GPU with 12 GB CPU
memory.

4.3 Baseline
For the painting style datasets, most of the existing works recognize
the style with the only ground truth label [22, 23, 33]. Based on this,
many works achieve promising performance for style classifica-
tion [1, 5] with VGG network. We apply the probability distribution
predicted by the network to compare the generated label distribu-
tion with the predefined label distribution, and according to highest
probability of style in the distribution to calculate the classification
accuracy. In order to verify the effect of the proposed art historical
label distribution learning, we choose VGGNet trained with only
the ground truth style label as our baseline.

4.4 Distribution Learning Results
We generate the label distributions separately considering the ori-
gin time relationship of the style (using the proposed two time
distribution strategies), the birthplace relationship and the specific
art movement. In addition, we fuse these features of historical con-
text that can comprehensively reflect the relationship of styles in
multimodal label distribution experiments. By optimizing the clas-
sification loss as well as the style distribution loss, the network
learns a variety relationship of historical context between the styles
of training.



Table 1: Ablation experiments on the Painting91, OilPaint-
ing, and Pandora datasets. The first line denotes baseline us-
ing the single label. And we consider four additional prop-
erties of historical context with different label distributions.
Note that TD1, TD2, BP, and AM represent two time distribu-
tion strategies, Birthplace, and Art movement, respectively.

Base TD1 TD2 BP AM Painting91 OilPainting Pandora
√

72.89% 64.24% 70.52%√
76.29% 69.58% 71.09%√
75.93% 68.88% 71.12%√
76.66% 69.28% 72.21%√
76.38% 69.05% 71.95%

√ √
77.11% 69.85% 71.20%√ √ √
77.39% 70.23% 72.87%√ √ √
77.21% 70.10% 72.53%√ √ √ √
77.76% 70.59% 73.28%

In this section, we first discuss the effect of hyper-parameters
in our method, and then we provide ablative experiments to un-
derstand the impact using different art historical factors. Finally,
we compare the proposed method against the state-of-the-art ap-
proaches.

4.4.1 Hyper-parameter. In Figure 4, we show the experiment
results using different value of λ, β and α in fig(a), fig(b) and fig(c),
respectively. We first research the effect of the value of λ on the
experimental results. When the λ = 0.8, we usually can acquire the
best classification accuracy. It means the classification loss is the
main part of the final loss because the style classification task is
still a single label forecast. So in this paper, we set λ = 0.8 based on
multiple experiments, and we achieve the best classification effect
with this value.

We assign the birthplace label value of real style to 1, and for
other styles that were born in the same country, we give the fixed
value. The final performance is robust to the variations of β in
certain ranges. However, setting β to be a tiny value, for example,
the label distribution performs similarly to the single label when the
β = 0.1. On the other hand, setting β to a relatively larger value, say
β = 0.6, will over-reduce the effect of the commonly-used ground
truth style label, and we observe a downward trend in the final
results. In this work, we set β = 0.3 for birthplace label distribution
in order to get the best classification performance. Similarly, we set
α = 0.3 for the art movement label distribution.

4.4.2 Performance on the Painting91 style dataset. Table 1 shows
experimental results using the baseline and our methods using label
distribution. We define three different historical context factors (the
origin time factors include two representations) that affect the
label distribution, where the TD1, TD2, BP, and AM respectively
represent the proposed two time distribution strategies, Birthplace,
and Art Movement.

The first line of this table shows the results of using the single
label, which does not take into account these historical context
factors. On the Painting91 style dataset, the classification accuracy
based on the single label is 72.89%.

Table 2: Classification performance on the test set of Paint-
ing91 dataset, OilPainting dataset, and Pandora dataset.
Note that somemethods do not provide the source code, thus
some datasets cannot be evaluated, denoted as ‘-’.

Method Painting91 OilPainting Pandora

VGGNet [44] 72.89% 64.24% 70.52%
Khan F. S. et al. [23] 62.20% - -
Condorovici et al. [6] - - 37.90%
Florea et al. [9] - - 54.70%
CMFFV [37] 67.43% - -
MSCNN1 [34] 69.67% 55.24% 70.32%
MSCNN2 [34] 70.96% 57.92% 69.75%
CNN F4 [33] 69.21% 58.47% 70.47%
Peng K. C. et al. [35] 71.05% - -
Gram [5] 71.86% 60.61% -
Gram-Cov [5] 72.41% 60.72% -
Gram dot Cos [5] 73.59% 63.33% -
SCMFA [38] 73.16% - -
Anwer R. M. et al. [1] 74.80% - -
Ours 77.76% 70.59% 73.28%

The second to the fifth line are experimental results that define
the distribution based on the single historical context factor. The
label distribution of ‘TD1’ strategy achieves a classification accuracy
of 76.29% while using the ‘TD2’ strategy only obtains the result
of 75.93%. This is because of the fact that the ‘TD2’ strategy takes
account of the specific production time of each painting style, which
usually is not uniform, and the distance between some time adjacent
styles is too far in this distribution strategy, so the label value of
the corresponding position is very low. This is easy to understand.
For example, Renaissance paintings prevailed in the fourteenth to
sixteenth centuries, and in the Painting91 style dataset the next
style in the chronological order is Baroque that was popular in
the seventeenth century. Compared to other adjacent styles that
predominated over a few decades or even years, it is too long, even
if we take a series of time changes. On contrary, although the ‘TD1’
only considers the numerical order of style, it can effectively avoid
the inequality of style interval time.

The label distribution using birthplace factor has made a greater
improvement and achieves 76.66% accuracy, which means the birth-
place can effectively reflect the development of styles, and the style
produced in the same country under the same historical background
is also influenced by other forms of art and therefore shares a high
similarity. The classification accuracy using the art movement fac-
tor is 76.38%, which demonstrates a definite inheritance relationship
in historical context. All the results using single historical context
factor can outperform the baseline. In the sixth line, we synthesize
two time distributions with η = 0.8 and achieve better results than
using the single time distributions strategy. Compared with using
the single factor results, the experiment of using more than one
historical context factor can complement each other and achieve
better performance. The last line in Table 1 considers multiple his-
torical context factors based on the multimodal CNN framework,
and it achieves the best accuracy of 77.76%.
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Figure 5: Examples from the Painting91 dataset with the predicted label distribution by VGGNet and our methods. For each
subfigure, we introduce the style information at the bottom of the painting. On the right side of the painting, we list six
predicted results using single label (VGG) and different label distribution methods (including two time strategies TD1 and
TD2, the birthplace distribution (BP), the art movement distribution (AM), and multiple historical context factors (Ours)). The
ground truth label (GT) is shown in the last column.

To evaluate the effectiveness of themulti-factor label distribution,
we compare our proposed method with deep learning methods and
other popular methods on the Painting91 style dataset. Table 2
shows the experimental results of our method as well as other style
classification methods for style classification. Khan et al. [23] use
some common visual feature methods and combine them to get
the result of 62.20%. The experimental result using MSCNN [34]
is 70.96%, and independently calculating the correlation between
Gram matrices and Cosine similarity (Gram dot Cos) [5] achieves a
classification accuracy of 73.59%.

In addition, the classification accuracy using SCMFA (a sparse
representation based complete kernel marginal Fisher analysis) [38]
can achieve 73.16%, and the method of the deep features combining
holistic and part-based information [1] is with the best result of
74.80%. In general, our method obtains a classification accuracy of
77.76%, which outperforms the current state-of-the-art methods.

4.4.3 Performance on the OilPainting dataset. The classification
result of the single label is 64.24%, without considering the origin
time, the birthplace of the style, and the artistic style relationship
reflected by art movement. For the single factor distribution, the
‘TD1’ strategy has achieved a classification accuracy of 69.58%, and
the result of ‘TD2’ strategy is 68.88%, which are similar to the exper-
imental result on the Painting91 dataset. However, different from
Painting91, the label distribution experiment using the birthplace
factor has only been made a less improvement compared with the
single label result. This result reflects that the styles in OilPainting
dataset are not very discriminatory for the place of origin. In this
dataset, 12 painting styles are originated from France, and the re-
maining five styles come from other three regions, which means
that there is a geographical connection between more than two-
thirds of these styles. This would be the main reason why we can
not generate a discernible style distribution through the geographic
information. As an example, the Renaissance style paintings are
divided into three categories: High Renaissance, Northern Renais-
sance, and Mannerism (Late Renaissance). The Renaissance was

born in Italy and later throughout Europe, and the Northern Renais-
sance refers particularly the Renaissance occurred in Europe north
of the Alps. Therefore, it is not appropriate to classify its birth-
place as Italy (the birthplace of other two Renaissance styles) or the
northern region as a place of origin. The label distribution experi-
ment using the art movement relationship achieves a classification
accuracy of 69.05%.

As shown in Table 2, we compared the experimental results of
the proposed method with the existing methods on OilPainting
dataset, and the classification result of the VGGNet is 64.24%. The
classification accuracy using the Gram matrices can be achieved
60.61%, and the method of independently calculating the corre-
lation between Gram matrices and Cosine similarity (Gram dot
Cos) achieves the best classification accuracy of 63.33% [5]. Notice
that our method obtains a classification accuracy of 70.59%, which
outperforms the current state-of-art methods by over 7%.

4.4.4 Performance on the Pandora dataset. The classification
result of the baseline is 70.52% without considering the histori-
cal context. For the single factor distribution, the ‘TD1’ and ‘TD2’
strategies achieve similar results (i.e., 71.09% and 71.12% respec-
tively). Although in this dataset the origin time intervals of some
style origins are larger than those in such as OldGreekPottery and
Iconoclasm, we still observe some advantages comparing with the
baseline. In addition, the label distributions of the birthplace and the
art movement factor display the better classification effect, which
achieves the accuracy rate of 72.21% and 71.95% separately. It in-
dicates that the birthplace and the art movement information can
better reflect the connection between styles in Pandora dataset.
Combining multiple historical context knowledge further improves
the classification results, and finally, the proposed method achieves
the classification accuracy of 73.28% using four historical informa-
tion.

As shown in Table 2, we compare the multi-factor method with
other previous methods on the Pandora dataset. The classification
result of traditional visual descriptor method using local and global
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Figure 6: Comparison of VGGNet and our method on the
Painting91 dataset. For each subfigure, the left image is two-
dimensional representation using t-SNE for test images, and
the right is the feature embedding with 13 style categories
denoted by different colors. The VGGNet is trained in the
discrete label space, while the proposed method takes the
style relation into consideration. Please, zoom-in for details
of the border between the Baroque and the Renaissance.

features [9] is 54.70%. The classification accuracy of MSCNN1 [34]
is 70.32%, and the CNN F4 [33] method achieves 70.47%. The single
label method using VGGNet [44] gets the result of 70.52%. Our
method considering the multi historical factors outperforms these
methods and achieves the accuracy of 73.28%.

4.5 Visualization and Analysis
As shown in the Figure 5, we list some representative painting
images from the validation dataset of Painting91, and compare the
predicted results between our method and the single label method
using VGGNet for each painting. In each group of distribution,
the red distribution represents the ground truth label (GT), and
blue distributions represent six predicted results using the single
label (VGGNet) and different historical context (two time strategies
TD1 and TD2, the birthplace distribution (BP), the art movement
distribution (AM), and multiple historical context factors (Ours)).
In each distribution image, the ordinate indicates the probability of
each label, and the abscissa indicates 13 styles in Painting91 dataset,
of which the numbers 1 to 13 respectively represent Renaissance,
Baroque, Neo-classical, Romanticism, Realism, Impressionism, Post-
impressionism, Symbolism, Cubbism, Constructivism, Surrealism,
Abstract expressionism, and Pop art.

In Figure 5, the first painting is Baroque style, and the single
label method is very firmly that this is a Renaissance style painting.
In our methods, both two kinds of time distributions show a de-
creasing trend on both sides of the ground truth style except for the
difference of each distribution value, and predicted distributions are
roughly consistent with the generated distributions using historical

context. For the birthplace distribution, the second highest is the
Renaissance that is also born in Italy. The second painting comes
from the Neo-classical style which is often confused with Baroque,
probably because they have similar color characteristics and the
strong contrast of light and shade. This feature is also reflected in
time distributions since the Baroque and the Neo-classical style
both originate before the 19th century. For these two paintings, the
classification advantage of the art movement distribution is not
very obvious (the second highest value approximates the proba-
bility of the correct style) due to the confusion of the image itself.
But sometimes art movement factor also shows the better differ-
entiation. The last painting belongs to the Surrealism style, while
it also has strong baroque and neoclassical features due to its dim
shades. The VGGNet misclassified it into Neo-classical style, and
our methods using different historical context are also affected by
the diverse features of the painting, especially the TD1. Fortunately,
the birthplace distribution and art movement distribution can effec-
tively alleviate this situation. Therefore, our method affects style
classification via combining many factors in historical contexts that
reflect the development of painting style.

As shown in the Figure 6, we compare our method with the
single label method in the Painting91 dataset. Two groups of fig (a)
and fig (b) show the results of the VGGNet and the proposed label
distribution method. We show the two-dimensional representation
using t-SNE [48] on the left, and the right image is the feature
embedding with 13 style categories denoted by different colors.
Figure 6 (a) (left) shows the single label method cannot accurately
distinguish the style of painting, especially the three styles of Re-
naissance, Baroque, and Neoclassical. Figure 6 (b) (left) shows our
method can effectively distinguish Baroque and Renaissance style
paintings because of the art historical context knowledge. And we
can clearly see that the method we proposed can cluster paintings
with the same style together compared to the single label method.

5 CONCLUSION
Different from the existing methods that only use visual features for
painting image style classification, we show that historical context-
based side information may encode complementary information.
Motivated by this, a multi-factor distribution is employed, based
on an ensemble of label distribution learning with these three fac-
tors, as a soft label to enhance the feature discriminability in CNN.
We achieve this knowledge distilling through a multi-task learn-
ing framework which is end-to-end-trainable. Experimental results
demonstrate that our proposed method successfully embodies the
relationship of painting styles in historical context and performs fa-
vorably against the state-of-the-art approaches on various painting
style datasets.
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